This video is free to watch  hope you enjoy it! If you like what you see, there's a ton more where that came from...
The Basics of Logic
Let’s jump right in at the only place we can: the very begining, diving into the perfectly obvious and terribly argumentative 'rules of logic'.
This content is for subscribers only  which you can become in just 30 seconds!
Let’s jump right in at the only place we can: the very begining. The programs we write every day are based on orchestrated algorithms and data structures that all have their roots in a single thing: LOGIC. Let’s quickly explore some basic logical rules as we’re going to build on them later on.
Logic… What Exactly Is It?
The first, most obvious is question is how are we defining the term “logic”. There are a few different definitions so let’s start with the first, offered by Aristotle. In trying to come up with a framework for thinking, Aristotle described what are known today as The Laws of Thought. Let’s take a look at each one using JavaScript!
The first is The Law of Identity, which simply states that a bit of logic is whole unto itself  it’s either true, or false, and it will always be equal to itself.
Here we’re describing this as x === x
, which… yes… I know seems perfectly obvious but stay with me.
The next law is called The Law of Contradiction, which states that a logical statement cannot be both true and false at the same time. Put another way  a true statement is never false, and a false statement is never true.
Again  this is perfectly reasonable and seems obvious. Let’s keep going with the third law: Excluded Middle.
This one’s a bit more fun as it states that something can either be true or false  there is no inbetween. Using JavaScript we can demonstrate this by setting x
and y
to true and false and playing around with different operations  the only thing that is returned, based on those operations, is true
or false
 that’s Excluded Middle in action.
And right about now some of you might be bristling at this.
Ternary Logic
As I’ve been writing the statements above we’ve been seeing JavaScript evaluate the result of each, which has been undefined
. The idea here is that there’s a third state, that’s neither true nor false  which is undefined. You can also think of this as null
for now even though, yes, null and undefined are two different things. We’ll lump them together for the sake of defining what’s known as “ternary logic”  or “three state logic” which kicks Excluded Middle right in the teeth.
Problems
Aristotle had a problem with his logical system  it only deals with things that are known. The only things we can know for sure are things that have happened already and that we have witnessed somehow… even then there’s a question of whether we truly know them. Let’s sidestep that rabbit hole.
When asked to apply his Laws of Thought to future events  such as “will Greece be invaded this year” Aristotle replied that logic cannot apply to future events as they are unknowable. An easy out, and also a lovely transition to Ternary Logic.
Determininism
Let’s bring this back to programming. You and I can muse all day about whether Aristotle’s brand of logic  which we can call “binary” for now  is more applicable or whether the world can be better understood with the more flexible ternary logic. But I don’t want to do that because I’m here to talk about computer programming and for that there’s only one system that we can think about  a deterministic system.
If you read the first Imposter’s Handbook you’ll likely remember the chapter on determinism (and nondeterminism). If not  a simple explanation is that a deterministic system means that every cause has an effect and there is no unknown.
Programs are deterministic because computers are deterministic. Every instruction that a computer is given is in the form of groups of 1s and 0s… there are no undefined middle points. This is important to understand as we move forward  the math that we’re about to get into and the very advent of computer science is predicated on these ideas. I know what you’re thinking though…
What About Null, None, Nil or Undefined?
Programming languages define much more than simply true or false  they also include the ability to have something be neither in the forms of null, nil, none or undefined. So let me ask you a question… is that logical?
Let’s take a look.
By default, JavaScript (and many other languages) will default a variable to an unknown value such as null or, as you see here, undefined. If I ask JavaScript if something undefined is equal to itself, the answer is true. If it’s not equal to itself the answer is false  so good so far.
What about being equal to notnot itself? Well that’s false as well which makes a bit of distorted sense because !y
is false so !!y
returns true… I guess. But if something is !undefined
… what is it? To JavaScript… it’s simply true
.
We can shortcircuit our brains thinking about this but let’s not…
The Billion Dollar Blunder
The creator of ALGOL, Tony Hoare, is credited with creating the concept of null
in a programming language:
I call it my billiondollar mistake…At that time, I was designing the first comprehensive type system for references in an objectoriented language. My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years.
Have you ever battled null problems in your code or tried to coerce an undefined value into some kind of truthy statement? We all do that every day.
Computers aren’t capable of understanding this. Programming languages are, apparently and at some point the two need to reconcile what null
and undefined
means. What makes this worse is that different languages behave differently.
Ruby
Ruby defines null
as nil
and has a formalized class, called NilClass
for dealing with this unknowable value. If you try to involve nil
in a logical statement, such as greater or less than 10, Ruby will throw an exception. This makes a kind of sense, I suppose, as comparing something unknown can be … anything really.
But what about coercion? As you can see here, nil
will be evaluated to false and asking nil if it’s indeed nil will return true. But you can also convert nil to an array or an integer… which seems weird… and if you inspect nil you get a string back that says “nil”. We’ll just leave off there.
JavaScript
JavaScript is kind of a mess when it comes to handling null
operations as it will try to do it’s best to give you some kind of answer without throwing an exception. 10 _ null
is 0, for instance… I dunno…
It’s the last two statements that will bend your brain, however, because 10 <= null
is somehow false… but 10 >= 0
is true. I know JavaScript fans out there will readily have an answer… good for them I’m sure there’s a way to explain this but honestly it’s not sensical to begin with because, as I’ve mentioned, null
and undefined
are abstractions on top of purely logical systems. Each language gets to invent it’s own rules.
If you ask JavaScript what type null
is you’ll get object
back  which isn’t true, as MDN states:
In the first implementation of JavaScript, JavaScript values were represented as a type tag and a value. The type tag for objects was 0. null was represented as the NULL pointer (0x00 in most platforms). Consequently, null had 0 as type tag, hence the bogus typeof return value.
C#
Let’s take a look at a more “structured” language  C#. You would think that a language like this would be a bit more strict about what you can do with Null… but it’s not! OK it DOES throw when you try to compare null to !!null  that’s a good thing, but when you try to do numeric comparisons… hmmm
And null + 10 is null? I dunno about that.
The Point
So, what’s my point with this small dive into the world of logic and null? It is simply that null is an abstraction defined by programming languages. It (as well as undefined) has no place in the theory we’re about to dive into. We’re about to jump into the land of pure logic and mathematics, electronic switches that become digital… encoding… encryption and a bunch more  none of which have the idea of null or undefined.
It’s exciting stuff  let’s go!

The Basics of Logic
Let’s jump right in at the only place we can: the very begining, diving into the perfectly obvious and terribly argumentative 'rules of logic'.

Boolean Algebra
You're George Boole, a selftaught mathematician and somewhat of a genius. You want to know what God's thinking so you decide to take Aristotle's ideas of logic and go 'above and beyond' to include mathematical proofs.

Binary Mathematics
This is a famous interview question: 'write a routine that adds two positive integers and do it without using mathematic operators'. Turns out you can do this using binary!

Bitwise Operators
This is a famous interview question: 'write a routine that adds two positive integers and do it without using mathematic operators'. Turns out you can do this using binary!

Logical Negation
We've covered how to add binary numbers together, but how do you subtract them? For that, you need a system for recognizing a number as negative and a few extra rules. Those rules are one's and two's complement.

Entropy and Quantifying Information
Now that we know how to use binary to create switches and digitally represent information we need to ask the obvious question: 'is this worthwhile'? Are we improving things and if so, how much?

Encoding and Lossless Compression
Claude Shannon showed us how to change the way we encode things in order to increase efficiency and speed up information trasmission. We see how in this video.

Correcting Errors in a Digital Transmission, Part 1
There are *always* errors during the transmission of information, digital or otherwise. Whether it's written (typos, illegible writing), spoken (mumbling, environment noise) or digital (flipped bits), we have to account for and fix these problems.

Functional Programming
Functional programming builds on the concepts developed by Church when he created Lambda Calculus. We'll be using Elixir for this one, which is a wonderful language to use when discovering functional programming for the first time

Lambda Calculus
Before their were computers or programming languages, Alonzo Church came up with a set of rules for working with functions, what he termed lambdas. These rules allow you to compute anything that can be computed.

Database Normalization
How does a spreadsheet become a highlytuned set of tables in a relational system? There are rules for this  the rules of normalization  which is an essential skill for any developer working with data

Big O Notation
Understanding Big O has many real world benefits, aside from passing a technical interview. In this post I'll provide a cheat sheet and some real world examples.

Arrays and Linked Lists
The building block data structures from which so many others are built. Arrays are incredibly simple  but how much do you know about them? Can you build a linked list from scratch?

Stacks, Queues and Hash Tables
You can build all kinds of things using the flexibility of a linked list. In this video we'll get to know a few of the more common data structures that you use every day.

Trees, Binary Trees and Graphs
The bread and butter of technical interview questions. If you're going for a job at Google, Microsoft, Amazon or Facebook  you can be almost guaranteed to be asked a question that used a binary tree of some kind.

Basic Sorting Algorithms
You will likely *never* need to implement a sorting algorithm  but understanding how they work could come in handy at some point. Interviews and workarounds for framework problems come to mind.

DFS, BFS and Binary Tree Search
You now know all about trees and graphs  but how do you use them? With search and traversal algorithms of course! This is the next part you'll need to know when you're asked a traversal question in an interview. And you will be.

Dynamic Programming and Fibonnaci
Dynamic programming gives us a way to elegantly create algorithms for various problems and can greatly improve the way you solve problems in your daily work. It can also help you ace an interview.

Calculating Prime Numbers
The use of prime numbers is everywhere in computer science... in fact you're using them right now to connect to this website, read your email and send text messages.

Graph Traversal: Bellman Ford
How can you traverse a graph ensuring you take the route with the lowest cost? The BellmanFord algorithm will answer this question.

Graph Traversal: Djikstra
BellmanFord works well but it takes too long and your graph can't have cycles. Djikstra solved this problem with an elegant solution.